含有自旋轨道耦合的三组分冷原子的颤动

王昭阳,陈园园*

上海大学理学院,上海 200444

摘要 自旋轨道耦合的超冷原子系统是模拟颤动的优秀平台。目前,实验对颤动的研究限制在两组分系统中,而 已有的基于三组分理论的自旋轨道耦合均不利于实验实现。为此,基于实验已经实现的三组分自旋轨道耦合系统 分析颤动,揭示了颤动具有多个振荡频率,当存在简谐束缚势时,颤动表现出丰富的物理内容。

关键词 原子与分子物理学;自旋轨道耦合;超冷原子;颤动

中图分类号 O436 文献标识码 A

doi: 10.3788/AOS201939.0902001

Zitterbewegung of Three-Component Cold Atoms with Spin-Orbit Coupling

Wang Zhaoyang, Chen Yuanyuan*

College of Sciences, Shanghai University, Shanghai 200444, China

Abstract Spin-orbit-coupled ultracold atom system becomes an important platform to simulate Zitterbewegung. Current experimental study of Zitterbewegung is in a two-component atomic system, while the existed three-component theoretical study on spin-orbit coupling is difficult to realize in experiments. In this paper, based on the experimentally realizable three-component spin-orbit-coupled system, we analyze the Zitterbewegung and reveal that the Zitterbewegung has many oscillation frequencies. In the presence of harmonic trap potentials, Zitterbewegung oscillation possesses more rich physical characters.

Key words atomic and molecular physics; spin-orbit coupling; ultracold atoms; Zitterbewegung **OCIS codes** 020.1335; 030.1640; 260.2160

1 引 言

颤动(Zitterbewegung)是相对论效应导致的粒 子空间位置颤动的量子现象,是薛定谔研究狄拉克 方程时发现的^[1]。颤动的幅度极其小,频率特别快, 在真实的相对论粒子系统中并不易被实验观测到。 在过去的十多年中,人们对颤动的理论和实验进行 了大量研究,并取得很大进展。各种优秀的可调控 性的实验平台被提出,用于模拟狄拉克方程,进而实 现颤动。2007年,Lamata等^[2]在理论上提出可利 用囚禁离子系统模拟颤动。2010年,Gerritsma 等^[3]在囚禁离子系统中观测到该现象。同年, Dreisow等^[4]通过设计双光波导阵列,利用产生的 双能带模型,在实验上实现了颤动。由于石墨烯的 低能可被有效描述为狄拉克方程,所以石墨烯系统 也很自然地被用于研究颤动^[5]。此外,人们还发现 含有自旋轨道耦合的非相对论系统也可以用于研究 颤动^[6]。该发现极大地丰富了颤动的研究内容。半导体量子阱中的电子可以感受到明显的自旋轨道耦 合效应,所以这类系统也被广泛地用于研究颤动^[7], 但是至今还没有这方面的实验报道。

超冷原子系统是优秀的量子模拟平台之一,但 是在原子层面,该系统并没有实现自旋轨道耦合。 鉴于自旋轨道耦合在各个物理领域的重要性,如何 在冷原子系统中实现自旋轨道耦合成为目前冷原子 物理的重要研究方向之一。2008年,Vaishnav等^[8] 基于 Ruseckas等^[9]发展起来的实现自旋轨道耦合 的方案,在理论上提出含有自旋轨道耦合的冷原子 系统可以模拟颤动。2011年,Lin等^[10]通过拉曼双 光子过程成功地在冷原子系统中实现了自旋轨道耦 合。该实验开启了研究冷原子自旋轨道耦合物理的 大门^[11-17]。紧接着,2013年Qu等^[18]在冷原子中实 现了自旋轨道耦合,进而在实验上观测到原子的颤 动。关于原子颤动的理论^[9]和实验^[18]都基于两组

收稿日期: 2019-04-09; 修回日期: 2019-04-27; 录用日期: 2019-05-13

^{*} E-mail: cyyuan@staff.shu.edu.cn

分系统,即自旋 1/2。将该现象推广到三组分^[19],会 产生丰富的研究内容,对深刻理解原子颤动有重要 意义。文献[19]在三组分原子系统中理论研究了含 有 Rashba 形式的自旋轨道耦合诱导出的颤动。目 前,利用冷原子实验可以在三组分系统中实现自旋 轨道耦合,但产生的是一维自旋轨道耦合^[20],而 Rashba 属于二维自旋轨道耦合,在三组分系统中通 过实验实现 Rashba 形式的自旋轨道耦合十分困 难。本文基于目前实验可以实现的一维自旋轨道耦 合的三组分冷原子系统,分析颤动的特征。

2 理论模型

实验中,通过双光子拉曼过程将铷原子的三个 超精细能级两两耦合,如图1所示。由于两束拉曼 光沿相反方向传播,拉曼耦合伴随着原子与光场的 动量交换,从而在原子中产生自旋轨道耦合。描述 该系统的哈密顿量^[21]为

$$\boldsymbol{H} = \frac{1}{2m} \left(\boldsymbol{p}_{x} + 2\hbar k_{\mathrm{R}} \boldsymbol{F}_{z} \right)^{2} + \frac{\hbar \delta'}{2} \boldsymbol{F}_{z} + \epsilon' \boldsymbol{F}_{z}^{2} + \boldsymbol{\Omega}' \boldsymbol{F}_{x},$$
(1)

式中: p_x 为原子沿 x 方向的动量; h 为约化普朗克 常量;m 为铷原子质量; δ' 为光场与原子能级的失 谐; ϵ' 为原子处于磁场中的二次塞曼项; Ω' 代表拉曼 耦合; $2k_R$ 为两束拉曼光在 x 方向沿着相反方向传 播时的波数差;自旋为 1 的泡利矩阵 F_z 和 F_x 可分 别表示为

$$\mathbf{F}_{z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ \mathbf{F}_{x} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$
(2)

为了以下数值计算方便,将哈密顿量进行无量 纲化。选取坐标 x 的单位为 $1/k_{\rm R}$,能量 E 的单位 为 $E_{\rm R} = \hbar^2 k_{\rm R}^2/m$,无量纲的哈密顿量可以表示为

$$\boldsymbol{H} = -\frac{1}{2} \frac{\partial^2}{\partial x^2} + \left(\frac{\delta}{2} - 2i \frac{\partial}{\partial x}\right) \boldsymbol{F}_z + (\epsilon + 2) \boldsymbol{F}_z^2 + \boldsymbol{\Omega} \boldsymbol{F}_x, \qquad (3)$$

式中:无量纲的量 $\delta = \hbar \delta' / E_{\rm R}; \epsilon = \epsilon' / E_{\rm R}; \Omega = \Omega' / E_{\rm R}.$

哈密顿量在动量空间很容易被对角化,由于泡 利矩阵是 3×3 形式,所以对角化后可得到三条能 带。图 2显示了典型参数下的能谱,其中 δ = 0.8 $E_{\rm R}$, ϵ =2 $E_{\rm R}$, Ω =1.5 $E_{\rm R}$,实线表示 Ω 时的能谱, 星号表示- Ω 时的能谱。最低能带中的圈点表示基态;利用竖线固定准动量,得到了三个能谱值,分别 标记为 ω_1 , ω_2 , ω_3 。可以这样理解该能谱的形 成^[22]:自旋轨道耦合的存在使得三条抛物线色散谱

图 1 三能级原子与拉曼光两两耦合示意图 Fig. 1 Diagram of coupling between Laman laser and three-level atom

在动量空间中的位置不重叠(即沿着动量空间能谱的横轴 k_x 发生平移),三条能带发生两两交叉,而拉 曼耦合 Ω 会使能带在交叉处打开能隙,失谐和二次 塞曼项使得抛物线色散关系沿能谱的能量方向(即 垂直轴)移动。

图 2 含有自旋轨道耦合哈密顿量的能谱 Fig. 2 Energy spectrum of spin-orbit-coupled Hamiltonian

3 颤动动力学

按照 Engels 实验团队的实验^[18] 激发原子颤动。该实验首先将原子制备在系统的基态,即图 2 中的最低支能带的圈点处。然后改变拉曼耦合系数,使得 Ω 突变为 $-\Omega$ 。实验可以通过调节两束拉曼光的相对相位来改变 Ω 的符号。哈密顿量在 Ω 和 $-\Omega$ 时具有相同的能谱,从图 2 可以看出,两种情况下的能谱完全重合。这是因为哈密顿量具有守恒量 $\hat{p}F_0$ 。算符 \hat{p} 的作用是使拉曼耦合系数变为其相反数,即 $\hat{p}\Omega$ $\hat{p}^{-1}=-\Omega$ 。 F_0 可表示为

$$\boldsymbol{F}_{0} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$
 (4)

由于[$\hat{p}F_0$, H]=0, 能谱在 Ω 和一 Ω 时完全相同, 但是对应的本征态会发生改变: 如果哈密顿量在

Ω 时本征态为Φ,则哈密顿量在-Ω 时相应的本征 态变为 $F_0Φ$ 。由于两种情况的本征态不同,原子的 初态,即Ω 时的基态,不再是新的具有-Ω 的系统 的本征态,该初态产生的动力学演化便是颤动^[18]。 在单粒子层面,颤动可以看成是包含所有自旋轨道 耦合能带的线性叠加,所以含颤动时演化的频率与 能带之间的能量差相关。就这个角度而言,颤动与 拉比振荡十分相似,但是与拉比振荡不同的是,颤动 在粒子占据数振荡的同时还伴随着粒子空间位置和 速度的振荡。

Engels 实验团队的实验考虑的是两组分系统。 本文将分析三组分自旋轨道耦合。由于此时能谱为 三条,期待颤动会有三个不同的频率,频率的大小取 决于三条能带的两两能量差值。数值模拟颤动时, 需要求解含时薛定谔方程,即

$$i\frac{\partial \boldsymbol{\Psi}}{\partial t} = \boldsymbol{H}\boldsymbol{\Psi},\tag{5}$$

式中:t 为时间,其单位为 h/E_R ; $\Psi = (\Psi_1, \Psi_2, \Psi_3)^T$ 为旋量波函数, Ψ_1, Ψ_2, Ψ_3 分别为旋量波函数的三 个组分。仿照 Engels 实验团队的实验,首先找到哈 密顿量在 Ω 时的基态,然后以此基态作为初态代入 (5)式,通过数值演化- Ω 时的薛定谔方程。物理 上, Ω 和系统的规范势相关^[22],突然改变 Ω 意味着 规范势含时,由量子力学可知:含时间的规范势会产 生有效电场,而电场作用在粒子上的电场力可以改 变粒子的准动量^[23]。但是,实验结果显示:在很长 时间(>100 ms)演化后原子的准动量都不会发生 改变^[18]。考虑到原子自旋轨道耦合这一特点,在动 量空间中求解(5)式。设波函数为

$$\Psi(x,t) = \Phi(t) \exp(ik_x x), \qquad (6)$$

式中: k_x 为准动量,其量纲为 k_R 。将试探波函数代入(5)式,得到

$$\mathbf{i} \frac{\partial \boldsymbol{\Phi}(t)}{\partial t} = \left[\frac{\boldsymbol{k}_{x}^{2}}{2} + \left(\frac{\delta}{2} + 2\boldsymbol{k}_{x} \right) \boldsymbol{F}_{z} + (\epsilon + 2) \boldsymbol{F}_{z}^{2} + \boldsymbol{\Omega} \boldsymbol{F}_{x} \right] \boldsymbol{\Phi}(t) \,.$$
(7)

在计算的过程中,将原子的准动量 k_x 固定为初态的准动量。采用标准的龙格-库塔方法演化上述方程。演化的结果如图 3(a)所示,通过原子在第一组分和第三组分占据的布居数差〈 F_z 〉= $|\Phi_1|^2 - |\Phi_3|^2$ 随时间的演化来刻画颤动,其中 Φ_1 和 Φ_3 为原子分别在波函数第一组分和第三组分的布居数。在冷原子实验中,原子布居数差可以通过 Stern-Glach

辅助的时间飞行方法测得^[18],原子的速度演化可以 通过海森堡方程由〈 F_z 〉得到,即

$$\langle \hat{v}_x \rangle = \frac{\mathrm{d}\hat{x}}{\mathrm{d}t} = -\frac{\mathrm{i}}{\hbar} \langle [\hat{x}, \mathbf{H}] \rangle = 2 \langle \mathbf{F}_z \rangle, \quad (8)$$

式中: \hat{v}_x 为速度算符; \hat{x} 为位置算符; $\langle \hat{v}_x \rangle$ 为速度算符的平均值。

图 3(a)的含时演化结果说明颤动不止包含一 个振荡频率,通过傅里叶变换,在频率空间中可以看 出颤动包含三个频率,如图 3(b)所示。经验证,这 些频率就是固定 k_x 后三条能带(图 2 所示的三个值 $\omega_1, \omega_2, \omega_3$)的两两差值,即 $\omega_{31} = \omega_3 - \omega_1, \omega_{21} = \omega_2 - \omega_1, \omega_{32} = \omega_3 - \omega_2$ 。

versus time; (b) Fourier transform of Fig. 3(a)

4 简谐势的影响

在所有的超冷原子物理实验中都不可避免地存 在简谐束缚势,因为实验需要简谐势束缚冷原子。 在上文的分析中,并没有考虑束缚势对颤动的影响, 为了可以忽略其影响,特意选择很弱的束缚势。由 于简谐束缚势的强弱很容易在实验中调节,以下将 讨论如果束缚势不可以被忽略,其对颤动的影响。 由于存在简谐束缚势,总的哈密顿量可表示为

$$\boldsymbol{H}' = \boldsymbol{H} + \frac{1}{2} f_x^2 x^2 \boldsymbol{E}, \qquad (9)$$

式中:x 为横坐标; f_x 为无量纲的简谐束缚势频率, 在束缚势存在时,其量纲为 $\hbar k_R^2/m$ 。按照 Engels 实 验团队的实验^[18]激发原子颤动:首先找到总系统的 基态,然后突然将 Ω 改变为 $-\Omega$,最后跟踪波函数的 含时演化。为了达到此目的,需要解含时间薛定谔 方程:

$$i\frac{\partial \boldsymbol{\Psi}}{\partial t} = \boldsymbol{H}'\boldsymbol{\Psi}_{\circ}$$
(10)

由于存在束缚势,准动量不再是一个好量子数, 不同于第3节动量空间演化的薛定谔方程。以下数 值计算,将采用标准的 split-step 方法含时演化方程。

典型参数下的演化结果如图 4 所示,其中, δ = 0.8 $E_{\rm R}$, ϵ =2 $E_{\rm R}$, Ω =1.5 $E_{\rm R}$, f_x =0.05 $\hbar k_{\rm R}^2/m$,图 4 中标有 1、2、3 的圈点处对应的波函数如图 5 所示。 颤动在短时间内的幅度衰减是因为束缚势存在时,初态波函数(Ω 下总哈密顿量的基态)为波包,如图 5(a)所示。该实空间中的波包在动量空间中也是波包,说明该初态在动量空间中占据多个连续的动量。文献[8]在两组分的自旋轨道耦合冷原子系统中揭示,如果初态在动量空间中为波包,则颤动体现为衰减。

图 4 存在简谐束缚势时的颤动

Fig. 4 Atomic Zitterbewegung in presence of harmonic trap

对于本文分析的三组分系统,颤动衰减的物理 图像可理解为在固定动量 k_x 时,哈密顿量 H 的三 条能带具有不同的群速度 $v,v=\partial E/\partial k_x$,这里的 E为哈密顿量 H 的其中任意一条能带。波包以群速 度运动,但是由于三条能带上的群速度不同,初态随 着时间演化为在空间分离的三个波包,如图 5(b)所 示,其中,中心在 x=0 处的波包主要来自于 H 的 最低能带,群速度为零,所以该波包中心不随时间改 变,而另外两个波包来自于 H 的其他两个能带,群 速度不为零,所以波包中心以各自群速度运动,这使 得三个波包在空间中的叠加区域随着时间的增加越 来越小,也就意味着波包之间的相干性越来越小。 由于颤动起源于三个能带的相干叠加,当波包之间 的相干性减小时,颤动幅度变小。如果三个波包空 间完全分离,颤动幅度变为零,即颤动消失。 图 3 所示为颤动在短时间内的衰减,但是颤动 在 $t > 18 \hbar \cdot E_R^{-1}$ 后又开始振荡。这是因为以不同 群速度运动的两个波包在碰撞到束缚势后发生反 射,反射回来的波包与中心处的波包再次发生相干, 从而振荡恢复。图 5(c)所示为反射回来的波包的 空间相干叠加。 $t > 48 \hbar \cdot E_R^{-1}$ 后,颤动幅度又开始 衰减,说明第一次反射回来的波包的空间叠加区域 又开始减小,当它们再次碰撞到束缚后,发生第二次 反射。由于束缚势存在,波包周而复始地分离和聚 合,构成如图 4 所示的振荡。如果束缚势频率比较 小,分离的波包需要较长的时间才能传播到束缚势 边界,进而发生发射,所以恢复振荡需要较长时间。

5 结 论

基于目前的冷原子物理实验,理论分析了三组 分自旋轨道耦合冷原子系统的颤动。本文的系统选 用一维自旋轨道耦合,较易在实验中实现。研究表 明,三组分的原子颤动的特征是具有多个振荡频率, 这些频率对应固定 k_x 后三条能带频率的两两差值, 即 $\omega_{31} = \omega_3 - \omega_1, \omega_{21} = \omega_2 - \omega_1, \omega_{32} = \omega_3 - \omega_2$ 。简谐 束缚势用于束缚冷原子,不可避免地存在于实验系 统中,它会保护颤动,使得振荡幅度不会为零。上述 分析进一步肯定了超冷原子系统是研究颤动的理想 平台。

参考文献

- Schrödinger E. Über die kräftefreie bewegung in der relativistischen quantenmechanik [M]. [S.l.: s.n.], 1930, 24: 418-428.
- [2] Lamata L, León J, Schätz T, et al. Dirac equation and quantum relativistic effects in a single trapped ion
 [J]. Physical Review Letters, 2007, 98(25): 253005.
- [3] Gerritsma R, Kirchmair G, Zähringer F, et al. Quantum simulation of the Dirac equation[J]. Nature, 2010, 463(7277): 68-71.
- [4] Dreisow F, Heinrich M, Keil R, et al. Classical simulation of relativistic Zitterbewegung in photonic lattices[J]. Physical Review Letters, 2010, 105(14): 143902.
- [5] Rusin T M, Zawadzki W. Transient Zitterbewegung of charge carriers in mono- and bilayer graphene, and carbon nanotubes[J]. Physical Review B, 2007, 76(19): 195439.
- [6] Schliemann J, Loss D, Westervelt R M. Zitterbewegung of electronic wave packets in III-V zinc-blende semiconductor quantum wells [J]. Physical Review Letters, 2005, 94(20): 206801.
- Zawadzki W, Rusin T M. Zitterbewegung (trembling motion) of electrons in semiconductors: a review[J].
 Journal of Physics: Condensed Matter, 2011, 23(14): 143201.
- [8] Vaishnav J Y, Clark C W. Observing Zitterbewegung with ultracold atoms [J]. Physical Review Letters, 2008, 100(15): 153002.
- [9] Ruseckas J, Juzeliūnas G, Öhberg P, et al. Non-Abelian gauge potentials for ultracold atoms with degenerate dark states [J]. Physical Review Letters, 2005, 95(1): 010404.
- [10] Lin Y J, Jiménez-García K, Spielman I B. Spin-orbitcoupled Bose-Einstein condensates [J]. Nature, 2011, 471(7336): 83-86.
- [11] Goldman N, Juzeliūnas G, Öhberg P, et al. Lightinduced gauge fields for ultracold atoms[J]. Reports on Progress in Physics, 2014, 77(12): 126401.

- [12] Zhang J, Hu H, Liu X J, et al. Fermi gases with synthetic spin-orbit coupling[M] // Madison K W, Bongs K, Carr L D, et al. Annual review of cold atoms and molecules. Singapore: World Scientific, 2014: 81-143.
- [13] Zhai H. Degenerate quantum gases with spin-orbit coupling: a review[J]. Reports on Progress in Physics, 2015, 78(2): 026001.
- Xu Y, Zhang C W. Topological Fulde-Ferrell superfluids of a spin-orbit coupled Fermi gas [J]. International Journal of Modern Physics B, 2015, 29(1): 1530001.
- [15] Li Y, Martone G I, Stringari S. Bose-Einstein condensation with spin-orbit coupling[J/OL]. (2015-10-06) [2019-03-01]. https://arxiv.org/abs/1410. 5526.
- [16] Zhang S Z, Cole W S, Paramekanti A, et al. Spinorbit coupling in optical lattices [M] // Madison K W, Bongs K, Carr L D, et al. Annual review of cold atoms and molecules. Singapore: World Scientific, 2015: 135-179.
- [17] Zhang Y P, Mossman M E, Busch T, et al. Properties of spin-orbit-coupled Bose-Einstein condensates[J]. Frontiers of Physics, 2016, 11(3): 118103.
- [18] Qu C L, Hamner C, Gong M, et al. Observation of Zitterbewegung in a spin-orbit-coupled Bose-Einstein condensate[J]. Physical Review A, 2013, 88(2): 021604.
- [19] Zhang Y C, Song S W, Liu C F, et al. Zitterbewegung effect in spin-orbit-coupled spin-1 ultracold atoms[J]. Physical Review A, 2013, 87(2): 023612.
- [20] Campbell D L, Price R M, Putra A, et al. Itinerant magnetism in spin-orbit coupled Bose gases [J/OL]. (2015-01-23) [2019-02-19]. https://arxiv.org/abs/ 1501.05984.
- [21] Sun K, Qu C L, Xu Y, et al. Interacting spin-orbitcoupled spin-1 Bose-Einstein condensates [J]. Physical Review A, 2016, 93(2): 023615.
- [22] Lin Y J, Compton R L, Perry A R, et al. Bose-Einstein condensate in a uniform light-induced vector potential[J]. Physical Review Letters, 2009, 102(13): 130401.
- [23] Ashcroft N W, Mermin N D. Solid state physics [M].Philadelphia: Saunders College Publishing, 1976.